Some properties of nilpotent Lie algebras

Authors

  • M. Araskhan Department of Mathematic, Yazd - Branch, Islamic Azad University, Yazd, Iran
  • M.R. Rismanchian Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, Shahrekord, Iran.
Abstract:

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Degenerations of nilpotent Lie algebras

In this paper we study degenerations of nilpotent Lie algebras. If λ, μ are two points in the variety of nilpotent Lie algebras, then λ is said to degenerate to μ , λ→deg μ , if μ lies in the Zariski closure of the orbit of λ . It is known that all degenerations of nilpotent Lie algebras of dimension n < 7 can be realized via a one-parameter subgroup. We construct degenerations between characte...

full text

The structure of a pair of nilpotent Lie algebras

Assume that $(N,L)$, is a pair of finite dimensional nilpotent Lie algebras, in which $L$ is non-abelian and $N$ is an ideal in $L$ and also $mathcal{M}(N,L)$ is the Schur multiplier of the pair $(N,L)$. Motivated by characterization of the pairs $(N,L)$ of finite dimensional nilpotent Lie algebras by their Schur multipliers (Arabyani, et al. 2014) we prove some properties of a pair of nilpoten...

full text

Degenerations of 7-dimensional Nilpotent Lie Algebras

We study the varieties of Lie algebra laws and their subvarieties of nilpotent Lie algebra laws. We classify all degenerations of (almost all) five-step and six-step nilpotent seven-dimensional complex Lie algebras. One of the main tools is the use of trivial and adjoint cohomology of these algebras. In addition, we give some new results on the varieties of complex Lie algebra laws in low dimen...

full text

Simple completable contractions of nilpotent Lie algebras

We study a certain class of non-maximal rank contractions of the nilpotent Lie algebra gm and show that these contractions are completable Lie algebras. As a consequence a family of solvable complete Lie algebras of non-maximal rank is given in arbitrary dimension. . AMS Math. Subj. Class. 17B10, 17B30.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 18

pages  15- 20

publication date 2019-05-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023